查看原文
其他

好享学丨不讲武德!全网最豪横Python制图源码分享,多达10种

The following article is from Python大数据分析 Author 朱卫军

好享学是高下制图推出的数据可视化经验分享栏目,我们将定期与您分享各界优秀人士的制图经验,一同学习。



内置示例数据集

seaborn内置了十几个示例数据集,通过load_dataset函数可以调用。

其中包括常见的泰坦尼克、鸢尾花等经典数据集。

# 查看数据集种类
import seaborn as sns
sns.get_dataset_names()
import seaborn as sns
# 导出鸢尾花数据集
data = sns.load_dataset('iris')
data.head()

1、散点图

函数sns.scatterplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
# 小费数据集
tips = sns.load_dataset('tips')
ax = sns.scatterplot(x='total_bill',y='tip',data=tips)
plt.show()

2、条形图

函数sns.barplot

显示数据平均值和置信区间

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
# 小费数据集
tips = sns.load_dataset("tips")
ax = sns.barplot(x="day", y="total_bill", data=tips)
plt.show()

3、线型图

函数sns.lineplot

绘制折线图和置信区间

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
fmri = sns.load_dataset("fmri")
ax = sns.lineplot(x="timepoint", y="signal", data=fmri)
plt.show()

4、箱线图

函数seaborn.boxplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
tips = sns.load_dataset("tips")
ax = sns.boxplot(x="day", y="total_bill", data=tips)
plt.show()

5、直方图

函数seaborn.distplot

import seaborn as sns
import numpy as np
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
np.random.seed(0)
x = np.random.randn(1000)
ax = sns.distplot(x)
plt.show()

6、热力图

函数seaborn.heatmap

import numpy as np
np.random.seed(0)
import seaborn as sns 
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
uniform_data = np.random.rand(1012)
ax = sns.heatmap(uniform_data)
plt.show()

7、散点图矩阵

函数sns.pairplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
iris = sns.load_dataset("iris")
ax = sns.pairplot(iris)
plt.show()

8、分类散点图

函数seaborn.catplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
exercise = sns.load_dataset("exercise")
ax = sns.catplot(x="time", y="pulse", hue="kind", data=exercise)\
plt.show()

9、计数条形图

函数seaborn.countplot

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
titanic = sns.load_dataset("titanic")
ax = sns.countplot(x="class", data=titanic)
plt.show()

10、回归图

函数 seaborn.lmplot

绘制散点及回归图

import seaborn as sns
sns.set()
import matplotlib.pyplot as plt
%matplotlib inline
tips = sns.load_dataset("tips")
ax = sns.lmplot(x="total_bill", y="tip", data=tips)

plt.show()

-END-




还在为如何制作精美图表苦恼头秃么?全新推出高下制图app,不断更新的制图模板,随心更改样式,轻松一键制图。现在积极参与高下制图内测,更有机会获得正式版会员,享受轻松作图哦。更多详情请扫码进群了解。












往期推荐

好享学丨相见恨晚!五招提升你的制图效率,数据专家都在用

好享学丨眼见为实,殊不知其实你的视线早就被安排好了!

好享学丨熬夜制图做了个寂寞!这些错误让设计师疯狂承伤

好享学 | “城市大脑”的智慧,把握城市脉动——基于LBS大数据量化城市尺度动态功能

好享学丨作图人,作图魂,作图才是人上人!送上致富经——30个关于数据可视化的小技巧

新世野丨设计师的大作,生物学家的悲哀。这一百年我们失去了太多!






点击上方蓝字关注我们







您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存